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Abstract
A problem of electronic correlations is considered for two specific mesoscopic
systems: the quantum point contact (QPC) and the double quantum dot (2QD)
system. The systems are described using a generalized Anderson Hamiltonian.
We show that charge fluctuations are relevant for electronic transport. In the
QPC a local accumulation of charge and the dynamical Coulomb blockade
effect lead to the 0.7 structure in the conductance characteristics. The evolution
of the conductance with a magnetic field and in non-equilibrium situations is
presented as well. The double quantum dot is studied in the approach, in
which correlations within the 2QD are treated exactly, whereas the coupling
of the 2QD to the leads is considered in the approximation valid at temperatures
above the Kondo temperature. We analyse the evolution of the gate voltage
dependence of the spin correlation functions and the conductance with the
change of the interdot hopping. For the hopping parameter greater than a
threshold value of the on-dot repulsion the physics of the device is dominated
by the ground state eigenstates of the 2QD and antiferromagnetic correlations
in the case of the doubly occupied 2QD. With a decrease of the interdot
hopping repulsion below the threshold we observe a significant reduction of
the antiferromagnetic coupling between the dots together with an enhanced
occupation of the triplet states.

1. Introduction

In this paper we want to consider the influence of electronic correlations on the transport
phenomena in nanostructures. Two situations are analysed: the transport through a quantum
point contact (QPC) and a system of two quantum dots (2QD) connected in series. In the
QPC the electronic transport depends on an electrostatic potential generated by two gate
electrodes, which leads to quantization of the conductance G. It was shown that apart from
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quantized conductance steps n × 2e2/h for integer values n, one can also observe a plateau at
0.7 × 2e2/h [1–4]. We consider a hypothesis that the 0.7 structure is due to an accumulated
charge in the QPC, which changes a local potential for transmission of electronic waves through
the QPC. The process is dynamical, because we assume charge fluctuations in the QPC and the
transmission coefficient changes in time. It is a similar process to the Coulomb blockade and
it is called the dynamical Coulomb blockade effect4. Our hypothesis is different from those
known in the literature [6–9]. Many theoretical works have been focused on a spontaneous
spin polarization [6] in the absence of an external magnetic field. A recent experiment [10],
using a magnetic focusing technique, showed the spin polarization of QPC in the low-density
regime, when G < 2e2/h, and the polarization is even stronger in samples with a well defined
0.7 structure. The origin of the spin polarization in a two-dimensional electron gas (2DEG)
system is still mysterious. Other theoretical papers proposed an explanation based on scattering
of transmitted electrons on bound singlet and triplet states formed in the QPC [7], or on
electron–phonon effects [8]. Experiments performed by Cronenwett et al [11] showed at low
temperatures a zero-bias peak in the differential conductance and the disappearance of the 0.7
structure plateau, which indicate formation of a Kondo-like correlated spin state. The role of
electronic correlations in the transport was studied by Meir et al [9] within the Anderson model
including correlated hopping. In this paper we want to consider a model in which an electronic
charge can be accumulated in the QPC. Electronic correlations between the accumulated
charge and flowing electrons lead to a dynamical Coulomb blockade effect, which reduces
the conductance to 2/3 × 2e2/h. We analyse the influence of temperature and a magnetic field
on the differential conductance as well as the effects of higher source–drain voltages.

In the second part of the paper we consider the influence of accumulated electrons on the
conductance through a 2QD system. Such a system is the simplest realization of a qubit, an
electronic device based on coherently coupled quantum dots. Much experimental effort has
been undertaken to construct a 2QD connected with the source and drain electrodes either
in parallel [12] or in series [13]. The problem is more complex, because one can have two
electrons and the single and triplet states have to be taken into account. A coherent coupling
of these states with conducting electrons leads to the Kondo resonance [14] involving both the
orbital and spin degrees of freedom of electrons [15]. The 2QD system can be considered as
two Kondo impurities and described by the two impurity Anderson model [16, 17]. Depending
on the relation of the inter-dot coupling to the dot–electrode coupling, one can expect two
different ground states. For the strong inter-dot coupling, the ground state is antiferromagnetic
(the singlet state formed by electrons at two neighbouring quantum dots), while in the opposite
case, for the strong coupling between the dots and the electrodes, two Kondo singlets are formed
between conducting electrons and those localized at the dots [16]. There is a competition
between the two configurations, which can be controlled by the interdot coupling. Our purpose
is to study the transition between these states, the role of charge fluctuations and many body
excitations, and their influence on the electronic transport.

2. Correlations in quantum point contact

2.1. Description of the model and calculations of the conductance

The transmission through the QPC is controlled by the voltage applied to the gate electrodes,
making an energy barrier with a slot between the Fermi sea in the source and the drain

4 The notion of the dynamical Coulomb blockade (DCB) was used for transport in nanostructures with a fluctuating
environment (also called the environmental Coulomb blockade); see [5]. In our case DCB means that flowing electrons
are accumulated at the QPC for a short time and they block transmission of other electrons.
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Figure 1. (Left) Schematic presentation of a potential barrier and wavefunctions corresponding
to the resonant transmission. Notice a large amplitude of the wavefunction in the region of the
potential barrier. (Right) The transmission coefficient T plotted as a function of the energy E of a
transmitted wave. The arrows show the position of the resonant transmission.

electrodes. The real size of the slot in the experiment [11] was 0.3 μm × 0.4 μm (width
× length), which is small in comparison with the Fermi wavelength λF ≈ 56 nm in 2DEG. In
a short QPC the transmission shows a series of resonant peaks—see figure 1. The first peak
corresponds to the wave with the half-wavelength λ1/2 equal to the length L of the potential
barrier. The amplitude of the resonant wave and the accumulated charge are large in the region
of the potential barrier. There is a ladder of resonant states, but the amplitudes of higher states
are smaller and electrons prefer to occupy the lowest resonant state. The accumulated charge
can lead to a reduction of the conductance if Coulomb interactions are taken into account. The
process is dynamical, because an electron is captured in the QPC for a short time. The time
of measurement of the current is very long with respect to the capture time, so the effective
conductance depends on the average number of accumulated electrons. We call this process
the dynamical Coulomb blockade [5]. The capture time in this case is much longer than the
relaxation time and the current is reduced to zero at low temperatures.

We want to prove that the conductance is reduced to the value 2/3 × 2e2/h due to the
dynamical Coulomb blockade effect. Our studies focus on the lowest resonant state ε0 and
the higher states are treated as a continuum energy sub-band. An electron transmitted through
the resonant state interacts with the accumulated charge, but the transmission via the sub-band
states is like that for free electrons with the perfect transmission corresponding to the 2e2/h
plateau in the conductance. The model can be described by an extended single-level Anderson
Hamiltonian

H =
∑

k,σ,α∈L ,R

εkα c†
kα,σ ckα,σ +

∑

σ

(
ε0 d†

0σ d0σ + U

2
n0σ n0−σ

)

+
∑

k,σ,α∈L ,R

(tα c†
kα,σ d0σ + h.c.) +

∑

k,σ

(tkL R c†
kL ,σ ckR,σ + h.c.). (1)

The first term describes electrons in the left (α = L) and the right (α = R) electrode; the
second one corresponds to an electron in the resonant state ε0 and the Coulomb interaction
of two electrons with opposite spins; the third one describes tunnelling of electrons from the
electrodes through the resonant state; and the last one corresponds the direct transmission of
electronic waves via the sub-band states.

The current (from the left electrode) is calculated by means of the non-equilibrium Green
functions [18]

I = −e

〈
d

dt

∑

k,σ

nkLσ

〉
= 2e

h̄

∫
dE

2π
Re

[∑

k,σ

tL G<
0,kLσ (E) +

∑

k,σ

tkL R G<
kRσ,kLσ (E)

]
, (2)
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where G<
0,kLσ is the lesser Green function corresponding to the resonant state and the state in the

left electrode and G<
kRσ,kLσ the lesser Green function between the states in both the electrodes.

Using the Dyson equation we calculate the non-equilibrium Green functions and express J only
by the local Green function G00 and the bare Green functions in the electrodes: g<

α = 2iπρ fα
and gr,a

α = ∓iπρ. Here, fα denotes the Fermi distribution function in the α-electrode, in
which the chemical potential is μα. Our calculations are performed for a symmetrically applied
source–drain voltage Vsd, i.e. μL = EF + eVsd/2 and μR = EF − eVsd/2 with respect to the
Fermi energy EF. We also assume the constant density of states ρ(E) = 1/2D for |E | < D
and D is taken as unity in the further calculations. In the case of quasi-elastic transport, for
which the current conservation rule is fulfilled for any energy E , one can determine the local
Wigner distribution function and can obtain an exact formula for the current

I = e

h

∫
dE [ fL(E) − fR(E)]

∑

σ

{αL R(E) + Im[α00(E)Gr
0σ,0σ (E)]}, (3)

where αL R(E) = 4π2ρ2t2
L R/w2, α00(E) = −4πρz2

Lz2
R/[w2(|zL |2 + |zR|2)], w(E) =

1 +π2ρ2t2
L R , zL = tL − iπρtL RtR , zR = tR − iπρtL RtL . We assume that the coefficient tL R(E)

depends on E of a transmitted wave and it is expressed as tL R(E) = t0
L R/{1 + exp[−(E −

hb)/sL R]}. Here, hb denotes a separation of the sub-band from the resonant state; sL R is a slope
of the curve. To ensure the perfect transmission for energies in the sub-band region we chose
t0
L R = 1/(πρ). We have checked that the functional form of tL R(E) has a minor quantitative

effect on the results presented.
In order to determine the Green function Gr

0↑,0↑ we use the equation of motion (EOM)
method

(E − ε0)Gr
0↑,0↑ = 1 +

∑

k,α

tαGr
kα↑,0↑ + U Gr

0↑0↓0↓,0↑. (4)

The equation involves a higher order Green function Gr
0↑0↓0↓,0↑ = 〈〈d0↑d†

0↓d0↓|d†
0↑〉〉r , for

which one can write the equation of motion

(E − ε0 − U)Gr
0↑0↓0↓,0↑ = 〈n0↓〉 +

∑

k,α

tα(Gr
kα↑0↓0↓,0↑ − Gr

0↑kα↓0↓,0↑ + Gr
0↑0↓kα↓,0↑) (5)

where 〈n0↓〉 is an average number of electrons with spin ↓ accumulated at the resonant state.
The Green functions Gr

kα↑0↓0↓,0↑ = 〈〈ckα↑d†
0↓d0↓|d†

0↑〉〉r , Gr
0↑kα↓0↓,0↑ = 〈〈d0↑c†

kα↓d0↓|d†
0↑〉〉r

and Gr
0↑0↓kα↓,0↑ = 〈〈d0↑d†

0↓ckα↓|d†
0↑〉〉r describe the coupling of electrons at the QPC with the

electrodes and they are treated in an approximate way∑

k

tαGr
kα↑0↓0↓,0↑ ≈

∑

k

tαGr
0↑kα↓0↓,0↑ ≈

∑

k

tαGr
0↑0↓kα↓,0↑ ≈ −iπ t2

αρ Gr
0↑0↓0↓,0↑. (6)

This approximation is perturbative to the order of t2
α . (A similar approximation was used in [19],

which for a single quantum dot gives the results of Meir et al [20]—the same decoupling
is used in the section 3.1.) Charge fluctuations are included, but spin-flip processes, which
lead to the Kondo resonance, are neglected. It corresponds to a high temperature regime (for
temperatures higher than the Kondo temperature TK), when the Abrikosov–Suhl peak in the
density of states is absent. In the limit U → ∞ the calculations are simpler and one gets
U Gr

0↑0↓0↓,0↑ ≈ −〈n0↓〉. Thus, from equation (4)

Gr
0↑,0↑(E) = 1 − 〈n0↓〉

E − ε0 + i�0
, (7)

where �0 = πρ(t2
L + t2

R). The electron concentration is expressed as

〈n0↑〉 = − 1

π

∫
dω f0(E)Im[Gr

0↑,0↑(E)], (8)

4



J. Phys.: Condens. Matter 19 (2007) 255211 B R Bułka et al

where f0(E) = γL fL(E) + γR fR(E) is the Wigner distribution function at the resonant state,
γL = |zL |2/(|zL |2 + |zR|2) and γR = |zR|2/(|zL |2 + |zR|2).

2.2. Analysis of the conductance in the quantum point contact

Now, we want to analyse the electronic transport through the QPC, which can be calculated
numerically from equations (3) and (7)–(8). However, we first present a simplified analysis.
The electron concentration is calculated in a self-consistent way and in the zero-bias limit
one gets from equation (8) 〈n0↑〉 = (1 − 〈n0↓〉)X , where X = (1/π)

∫
dE f0(E)�0/[(E −

ε0)
2 + �2

0]. If the Fermi level is close to the resonant transmission (EF ≈ ε0), one gets
X ≈ 1/2, and a paramagnetic solution 〈n0↑〉 = 〈n0↓〉 ≈ 1/3. In this simplified analysis we
neglect the interference effect between the resonant and the direct channel, which can occur in
a small range of the gate voltage and is smeared by temperature. For the resonant transmission
the first term in equation (3) is irrelevant, and the second term leads to the conductance
G0 = dI/dVsd|Vsd=0 proportional to Im[Gr

0↑,0↑(EF)]. Therefore, the conductance has a first
plateau at G ≈ (1 − 〈n0↓〉) × 2e2/h ≈ 2/3 × 2e2/h. The second plateau is at 2e2/h, when the
Fermi level goes above the potential barriers (EF > hb) and the transport is ballistic.

We have shown that the position of the first ‘anomalous’ conductance plateau is related
to the accumulation of charge. Due to the dynamical Coulomb effect the conductance is not
perfect, but reduced by a factor (1 − 〈n0−σ 〉), which for the resonant transmission is equal to
two-thirds. In the non-equilibrium situation, the electronic occupancy can have various values,
leading to new positions of the plateau, and the picture is more complicated, as we describe
below.

For a non-equilibrium situation (for large Vsd) one can distinguish three cases: (i) when the
Fermi energy EF is close to the edge of the 2/3 plateau, (ii) EF is close to hb (deep in the 2/3
plateau and close to the 1 plateau) and (iii) in the range of the 1 plateau for EF > hb. For case
(i) the applied potential Vsd shifts μR below the resonant energy range (μR � Vsd), while the
chemical potential in the left electrode can be still in the resonant regime μL ≈ ε0. Using the
relation for the Wigner distribution function f0(E) = γL fL (E)+ γR fR(E) we can express the
integral X = X L + X R as two contributions from the left and the right electrode. For this case
X L ≈ 1/4, X R ≈ 0 and X ≈ 1/4, which yields 〈n0↑〉 ≈ 1/5. The differential conductance
G = dI/dVsd also includes two contributions GL and GR . In the considered case GR = 0 and
therefore G = GL ≈ 2/5 × 2e2/h. In case (ii) the chemical potential μL can be shifted above
the tunnel barrier (μL > hb), while μR ≈ ε0. Both channels, the ballistic and the resonant one,
contribute to the transport. In this case X L ≈ 1/2, X R ≈ 1/4, X ≈ 3/4 and 〈n0↑〉 ≈ 3/7. The
ballistic channel gives GL ≈ 1/2 × 2e2/h and the resonant transmission GR ≈ 2/7 × 2e2/h.
It means that with increasing Vsd the differential conductance increases from 2/3 × 2e2/h and
reaches its maximal value 11/14 × 2e2/h ≈ 0.79 × 2e2/h for large voltages. In case (iii)
EF > hb, the ballistic channel only participates in the transport and G is kept at 2e2/h if the
voltage is small, eVsd/2 < (EF − hb). However, for larger Vsd the resonant channel becomes
activated and the conductance drops to G ≈ 0.79 × 2e2/h.

The results of self-consistent numerical calculations of the electron concentration from
equations (7)–(8) and the conductance from equation (3) are presented in figures 2 and 3. As
one can expect, the conductance steps are smeared for kBT ≈ �0, which is also presented
in figure 2(a). The applied magnetic field B shifts the energy levels �E = ±gμB B for spin
σ = ↑ and ↓. It changes the occupation numbers 〈n0↑〉 and 〈n0↓〉 as well as the conductance
G (see figure 2(b)). Figure 3 shows the set of differential conductance curves in the absence of
the magnetic field (B = 0) and in magnetic field (gμB B = 0.06 in units of the bandwidth D).
The figures confirm the previous analysis and show the evolution of the conductance curves
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(a) (b)

Figure 2. The conductance G0 = dI/dVsd|Vsd=0 as a function of the Fermi level EF for different
temperatures (a) and for different magnetic fields 0 � gμB B � 0.06 at kBT = 0.006 (b). The half-
bandwidth D of the electronic band in the electrodes is taken as unity, the coupling tL = tR = 0.1,
�0 = 0.0314, the direct inter-electrode hopping tL R = t0

L R/{1 + exp[−(E − hb)/sL R ]},
t0
L R = 2D/π , hb = 0.025, sL R = 0.003.

Figure 3. The differential conductance G = dI/dVsd as a function of the source–drain voltage Vsd

for −0.08 � EF � 0.10 (from bottom to top curve) at kBT = 0.006 for a magnetic field B = 0
and gμB B = 0.06. The other parameters are the same as in figure 2.

with increasing Vsd. The conductance from the value G = 2e2/h drops to c.a. 0.8 × 2e2/h.
If G = 2/3 × 2e2/h at Vsd then it evolves either to 0.8 × 2e2/h or to 0.4 × 2e2/h. The
lower conductance curves (corresponding EF < ε0) increase, reach a maximum and drop to
0.4 × 2e2/h. When the magnetic field is applied (figure 3(b)) the conductance curves are
similar to those in figure 3(a), with a pronounced plateau at 0.5 × 2e2/h.

Let us compare the plots in figure 3 with the experimental data in [11, 4]. The experimental
and the theoretical plots are similar in the high conductance region. The experimental plots
show the evolution of G from 2e2/h and 0.7 × 2e2/h to 0.8 × 2e2/h—similarly to the
curves in figure 3. In the lower conductance range the theoretical curves are different from
those in experiment. In high Vsd the experimental plots merge at 0.25 × 2e2/h [11], and at
0.25–0.4 × 2e2/h [4]. The experiments show that the source–drain voltage Vsd has a strong
influence on the electronic transport. The differential conductance curves change significantly

6
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in the range of a few millivolts, especially those with low conductance. This suggests a
modification of the potential barrier in the QPC with an increase in Vsd, which has a strong
influence on the conductance. In the present model we assumed only a shift of the chemical
potentials μα in the electrodes with Vsd. The energy structure of QPC (the position of the
resonant level ε0 and the coefficients tα) was taken as independent of Vsd.

3. Double-quantum-dot system correlations

3.1. Presentation of the model and the Hubbard operator method

Our 2QD system will be described by the two-impurity Anderson model, which will be studied
by means of the EOM approach taking into account charge fluctuations. The EOM with
various approximate decoupling procedures for the higher order Green functions was used in
the literature [22, 23]. The disadvantage of these procedures lies in omitting higher order
correlation functions and neglecting a contribution to transport from transmission channels
through excited states. In the present paper we apply the Hubbard operators [24] and the
decoupling procedure, which treats all electronic correlations exactly within the 2QD system
and requires determination of various intra- and interdot correlation functions, which are
computed here in a fully self-consistent way. In our decoupling some higher order correlations
between electrons at the 2QD and conducting electrons from the electrodes are omitted, which
is justified above the temperatures typical of the Kondo effect.

The Hamiltonian for two quantum dots connected in series is given by

H = Hel + H2QD + Hel−2QD =
∑

k,α,σ

εkα c†
kα,σ ckα,σ

+
∑

i,σ

εi d†
iσ diσ + t

∑

σ

(d†
1,σ d2,σ + d†

2,σ d1,σ ) + U

2

∑

i,σ

ni,σ ni,−σ

+ tL

∑

k,σ

(c†
kL ,σ d1,σ + h.c.) + tR

∑

k,σ

(c†
kR,σ d2,σ + h.c.), (9)

where the first term describes electrons in the electrodes (α = L, R); the second, third and
fourth terms correspond to electrons at 2QD with a local electron potential energy εiσ , an
electron transfer t between the quantum dots and intradot Coulomb interactions U ; the coupling
of 2QD to the electrodes is described by two last terms. We rewrite the 2QD Hamiltonian using
Hubbard operators [24]

H2QD =
∑

λ

EλXλλ. (10)

Above, Eλ denotes the exact eigenvalue of 2QD in the external potential generated by the
leads. The Hubbard operators are represented in terms of the exact eigenstates of the 2QD
Hamiltonian, |μ〉, |ν〉 as Xμν = |μ〉〈ν|. An arbitrary electron operator referring to the dimer
degrees of freedom can be expanded as a linear combination of the Hubbard operators

O =
∑

λλ′
〈λ|O|λ′〉 Xλλ′ . (11)

Using equation (11) the one-particle Green functions can be written in terms of linear
combinations of the mixed Green functions, defined with the help of Hubbard operators and
the single-particle operators

G jσ,mσ =
∑

λλ′
pλλ′

jσ Gλλ′,mσ , pλλ′
jσ = 〈λ|d jσ |λ′〉, (12)

7
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where Gλλ′,mσ = 〈〈Xλλ′ |d†
mσ 〉〉. The equations of motion for Gλλ′,mσ generate a chain of higher

order Green functions. This can be written schematically as

d

dt
〈〈X F |d†

mσ 〉〉 → 〈〈X B0(B2)c(†)

kασ ′ |d†
mσ 〉〉, (13)

d

dt
〈〈X B0ckασ ′ |d†

mσ 〉〉 → 〈〈X F c†
k′α′σ ′′ckασ ′ |d†

mσ 〉〉, (14)

where Bn indicates a boson-like Hubbard operator which reduces the number of electrons in a
state by n and F denotes a fermion-like Hubbard operator, removing a single electron from a
state. In order to close the set of equations we neglect electron correlations between the 2QD
and the leads and decouple the higher order Green function from equation (14) as follows:

〈〈X F
ζ ζ ′ c†

k′α′σ ′′ ckασ ′ |d†
mσ 〉〉 → δk′α′σ ′′,kασ ′ fα 〈〈X F

ζ ζ ′ |d†
mσ 〉〉 (15)

where fα is the Fermi function for the α lead. For a single quantum dot this approximation
reduces to the results of Meir et al [20] and correctly describes the limit of the Coulomb
blockade. In the non-interacting limit of the Hubbard model it reproduces the exact results.
For the finite repulsion U the neglect of the lead–2QD correlations is credible for temperatures
higher than the Kondo temperature. In our numerical computation we evaluated the poles of
the Green functions in the high temperature approximation (we set fα = 1/2), neglecting
the Kondo divergences. Alternatively, we can decouple the retarded and the advanced Green
functions as

〈〈ckασ ′ X |d†
mσ 〉〉r,a ≈ 1

2 tα gr,a
α 〈〈{dασ ′, X} |d†

mσ 〉〉r,a, (16)

which leads to the same result for the Green functions as the high temperature approximation
for equation (15).

The lesser Green functions are obtained according to the EOM procedure described by
Niu et al [25]. For the corresponding decoupling of the Green function we assume that, by an
analogy with equation (16),

〈〈c†
kασ ′ X |d†

mσ 〉〉< ≈ 1
2 tα gr

α 〈〈{dασ ′, X} |d†
mσ 〉〉< + 1

2 tα g<
α 〈〈{dασ ′, X} |d†

mσ 〉〉a . (17)

Using equation (16)–(17) one can obtain the explicit results for the energy Fourier transforms
of the retarded, advanced and lesser Green functions. They can be obtained in terms of
the exact eigenvalues of the dimer Hamiltonian, equation (10), the matrix elements of the
electron operators between the eigenstates of H2QD, and the averages of the boson–like
Hubbard operators [21]. In general, they are linear combinations of terms of the form
Rμν

(
E − Eμ + Eν + Qμν

)−1
. Here, Qμν is a line broadening term, depending on the matrix

elements of the electron operators and the coupling to the leads, Rμν is the residuum including
products of the matrix elements and the averages of the Hubbard operators and E is the energy.
The approximations defined by equations (16)–(17) reduce to the exact result in the limiting
cases of Coulomb blockade as well as the noninteracting limit and in between they serve as
the interpolating ansatz. In this approach all the intradimer charge and spin correlations are
taken into account accurately. On the other hand the coupling with the electrodes is treated
perturbatively to the second order t2

α , in which the charge fluctuations are taken into account, but
the Kondo type effects (depending on higher order correlations with electrons from the leads)
are neglected. The residua of the advanced and the retarded Green functions are determined by
the averages of the bosonic Hubbard operators. These averages are self-consistently computed
using the lesser Green functions,

〈X B
γλ′ 〉 = 1

Nγ

∑

λσm

〈λ|d†
mσ |γ 〉

∫
dE

2π i
G<

λλ′,mσ (E). (18)
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Since the poles of the Green functions do not depend on 〈X B
γλ′ 〉, the system of the equations

used to determine the averages is a linear one. From the averages of the boson–like Hubbard
operators, and using equation (11), arbitrary intradimer spin and charge correlation functions
can be easily found, e.g.

〈n1σ n2σ ′ 〉 =
∑

λ,λ′
〈λ′|n1σ n2σ ′ |λ〉〈X B

λλ′ 〉 (19)

and the spin–spin correlation function reads

〈S1 · S2〉 = − 3
4

∑

σσ ′
(−1)δσσ ′ 〈n1σ n2σ ′ 〉. (20)

In order to determine the current we start from a general formula of Meir and Wingreen [20]

I = ie

h

∫
dω �L

∑

σ

{
fL (E)

[
Gr

1σ,1σ (E) − Ga
1σ,1σ (E)

] + G<
1σ,1σ (E)

}
, (21)

where �α = 2πρt2
α . Inserting the results for the Green function into the integral (21) one finally

obtains an explicit result for the current in the form [21]

I = 2e�L�R

h

∑

λλ′μμ′

1

2

(
pλλ′

Lσ

〈{
d†

Lσ , X F
μμ′

}〉
+ p∗μμ′

Lσ

〈{
d†

Lσ , X F
λλ′

}〉∗)

×
∫

dE ( fL − fR)

[(
E 1̂ − �̂ − Q̂r

)−1
qR

(
E 1̂ − �̂ − Q̂a

)−1
]

λλ′,μμ′
, (22)

where �̂λλ′,μμ′ = δλλ′,μμ′ (Eλ − Eλ′), Q̂r = −i
∑

α �αqα, Q̂r = −Q̂a , and (qα)νν′ ,ζ ζ ′ =
δνν′ ,ζ ζ ′ + 1

2

∑
σ,α (pνζ

ασ pν′ζ ′
ασ + pζ ν

ασ pζ ′ν′
ασ ).

3.2. Analysis of correlation functions and transport in double quantum dot system

Now, we can calculate all correlation functions and the conductance in the 2QD system by
means of the procedure described above. We want to study many electron configurations
depending on the parameters of the model and their influence on the electronic transport.
Our attention is focused on a spin configuration, which can be changed with the interdot
coupling. Two limiting cases are interesting: (i) for the strong interdot coupling (stronger than
the coupling to the electrodes, t � �) and (ii) the strong coupling of 2QD to the electrodes
(� � t). In case (i) two electrons occupy the singlet ground state, while in case (ii) the spins
localized at the dots are decoupled.

The parameters of the 2QD system can be tuned in the experiment by gate voltages—one
can change the energy level position εi , the hybridization between the dots t and the coupling
to the electrodes �α . Figure 4 presents the correlation functions plotted versus the position
of the energy level in the dots E = ε1 = ε2. We assume that the Fermi energy EF = 0
and the levels in both dots are simultaneously shifted by the gate voltage. It is seen that the
electron concentration 〈n1↑〉 (dotted curve) increases with decreasing E . The thin vertical lines
show the regions in which the 2QD system has one, two and three electrons. These lines also
indicate the position of the levels for resonant transmission. The length of the total spin 〈S2

tot〉
(solid curve) is about 0.75 in the one electron (hole) region—in this case one free spin is in
the system. In the centre of the plot, corresponding to two electrons present at the 2QD, the
value of 〈S2

tot〉 depends on the interdot coupling t—compare figures 4(a) and (b) for t = 1 and
0.25, respectively. For large t , the length of the total spin is strongly reduced and achieves
its minimal value 〈S2

tot〉 = 0.03. The 2QD system is then in the molecular state and both
the spins are strongly coupled. The spin–spin correlator 〈S1 · S2〉 (dashed curve) is negative
and its absolute value increases with the second electron entering the 2QD (see figure 4(a)).
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(a) t = 1.0 (b) t = 0.25

Figure 4. The average number of electrons 〈n1↑〉 per spin at the quantum dot (dotted curve), the
square of the total spin length 〈S2

tot〉 (solid curve), the spin–spin correlator −〈S1 ·S2〉 (dashed curve)
plotted as a function of the energy level ε1 = ε2 = E for the hopping integral t = 1 (a) and
t = 0.25 (b) at U = 1, with the electrode–2QD coupling � = 0.05, the Fermi energy EF = 0
and the temperature T = 0. The vertical dashed lines denoted ‘01’ and ‘34’ indicate the positions
of the resonant levels at �E01 = E0 − E1 and �E34 = E3 − E4, which correspond to the
charge fluctuations from the zero-electron state to the one-electron state and from the three-electron
state to the four-electron state, respectively. Similarly, the dashed lines denoted ‘1s’, ‘1t’ or ‘s3’,
‘t3’ indicate the resonant transmissions at the energies �E1s = E1 − E−, �E1t = E1 − Et , or
�Es3 = E− − E3, �Et3 = Et − E3 (they correspond to the charge fluctuations either from the
one-electron ground or from the three-electron ground state to the singlet state, to the triplet state).

Figure 4(b) presents the plots for the weak interdot coupling t = 0.25. The plots are different
from those in figure 4(a). At the centre of the figure 〈S2

tot〉 reaches its maximal value 1.16,
which is not so far from the value 1.5 for the length of the total spin of two free electrons.
It means that the spins are weakly coupled. This statement confirms the plot of the spin–spin
correlation function −〈S1 ·S2〉, which shows a pronounced minimum in the centre of the figure.
The plot of −〈S1 · S2〉 shows an increase in the antiferromagnetic coupling when the singlet
state becomes occupied. However, the spin–spin correlation function drops when the triplet
state starts to participate in the transport.

Figure 5 shows the dependence of the spin correlation functions on the interdot coupling
parameter t in the centre of the electronic structure (E = U/2). In the atomic limit (for small t)
there are two uncoupled spins. The square of the spin length 〈S2

1〉 localized at each quantum dot
is a little bit smaller than three-quarters for the square of the spin length of a free electron. The
reduction is due to the electrode–2QD charge fluctuations, and the effect is more pronounced
for a larger �α . The value of 〈S2

1〉 monotonically decreases with increasing t . The spin–spin
correlation function −〈S1 · S2〉 increases in the first stage, reaches a maximum and decreases
for large t . The interdot spin coupling in the Hubbard dimer is given by J ≈ 4t2/U for a large
t . The charge fluctuations lead to the reduction of −〈S1 ·S2〉, which is more pronounced in the
region where J � �α . In order to show the role of charge fluctuations we calculated the spin
correlation functions for an ensemble of the dimers, coupled with a thermal reservoir (see the
appendix for details of the calculations). One can expect an increase of charge fluctuations
with increasing temperature T . The results, presented by the thin curves in figure 5, are
qualitatively close to those for the 2QD system. They confirm our hypothesis on the role of
charge fluctuations. The transition from the molecular state (with strongly coupled spins) to
the atomic state (with decoupled spins) depends on charge fluctuations and participation of the
triplet state. If the charge fluctuations are strong, an electron from the singlet state can be easily
transferred to the reservoir and next to the triplet state. This is an incoherent process, which
reduces the effective interdot spin coupling.

10
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Figure 5. The correlation functions: 〈S2
tot〉 (solid curve), −〈S1 · S2〉 (dashed curve) and 〈S2

1〉 (dot–
dash curve) as a function of the interdot hopping integral t at the centre of electronic structure (at
E = U/2) and for U = 1, � = 0.05, T = 0. The thin curves correspond to the correlation functions
calculated for an ensemble of dimers (presented in the appendix) at the temperature T = 0.14, at
which 〈S2

tot〉 has the same value as in the 2QD system for t = 0.01.

Figure 6. The conductance as a function of the energy level ε1 = ε2 = E for the hopping integral
t = 1 (solid curve) and t = 0.25 (dashed curve) at U = 1, the electrode–2QD coupling � = 0.05
and the Fermi energy EF = 0. The peaks (from the right-hand side) correspond to the resonant
states: for the one electron, for the singlet and for the triplet; and symmetrically (from the left-hand
side) for the one hole, for the singlet and for the triplet.

The conductance calculated by means of the Hubbard operators is presented in figure 6.
Usually one gets four peak conductance characteristics in the 2QD system (see e.g. [22, 23]),
in which the peaks correspond to the resonant transmission through the ground states. Our
procedure takes into account all many electron states and the corresponding poles in the Green
functions (Eλ − Eλ′)—see equation (22). Figure 6 also shows the peaks corresponding to
the excited states and to the triplet states—those in the middle of the figure. From the left-
hand side the first peak corresponds to the transmission through the one-electron ground state
with charge fluctuations between the states with zero and one electron, for which the energy
difference is �E01 = E0 − E1 = +|t| (for the eigenvalues see table A.1 in the appendix). The
second conductance peak is at �E1s = E1 − Es = −|t| − (U − �)/2, and corresponds to the
charge fluctuations between the one-electron state and the two-electron ground state (the singlet
state with E+). Symmetrically on the right-hand side of the figure there are the conductance
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peaks corresponding to the fluctuations between the three-electron and the four-electron states
at �E34 = E3 − E4 = −|t| − U , as well as between the two-electron and the three-electron
states at �Es3 = E− − E3 = +|t| − (U + �)/2. The amplitude of these peaks is higher than
those corresponding to the excited states. The positions of the transmission peaks through the
triplet states are at �E1t = E1 − Et = −|t| and �Et3 = Et − E3 = |t| − U .

Let us now consider the low temperature limit and the problem of influence of the many
particle states on the electronic transport. Our procedure used in the calculations of the
conductance neglects the spin fluctuations and the Kondo effect. The conductance is sensitive
to changes in the density of states (DOS) close to the Fermi energy. In the low temperature
limit, below the Kondo temperature, the DOS shows a Abrikosov–Suhl peak [26, 14], strongly
depending on temperature. Our procedure neglects this peak, and it gives reliable results at high
temperatures. However, the correlation functions are calculated as integrals and the whole DOS
below the Fermi energy contributes to these quantities. The correlation functions are, therefore,
less sensitive to the DOS changes close to the Fermi energy than the conductance. One can
expect that our computational procedure also gives reliable results for the correlation functions
in the low temperature limit. We want to discuss the problem of screening of the magnetic
moment by conduction electrons in the 2QD system. The case of the centre of the electronic
structure, corresponding to two electrons present at the 2QD, is especially interesting, because
one can study the transition from the molecular to the atomic state when the interdot coupling
is changed. One could observe an evolution of the conductance with a change of the spin
configuration. According to our best knowledge the effect has not been studied experimentally
in two quantum dots connected in series. For low interdot couplings (t � �α) the spins in 2QD
are decoupled, therefore, one expects the double Kondo resonance. The effect can be observed
in source–drain measurements as a zero-voltage peak in the differential conductance, which is
a characteristic feature of the Kondo resonance. In the strong coupling regime (t � �α) the
spins are antiferromagnetically coupled and the Kondo effect is absent. A similar situation was
predicted theoretically by Izumida et al [16], and Hofstetter and Schoeller [27] for a multilevel
quantum dot, which was just recently verified experimentally by Kogan et al [28].

4. Summary

In the paper we have considered the effects of charge fluctuations in electronic transport through
two mesoscopic devices: the quantum point contact (QPC) and the system of two quantum dots
(2QD) connected in series. The studies of the QPC are based on the assumption of a specific
electronic energy structure with a resonant level below the electronic sub-band. We have shown
that the charge fluctuations on the resonant state lead to the dynamical Coulomb blockade
effect, which reduces the conductance. The plateau appears at G0 ≈ 2/3 × 2e2/h, which
evolves to 1/2 × 2e2/h in a high magnetic field. For a non-equilibrium situation, the plateau
position is shifted toward 0.4 × 2e2/h and 0.8 × 2e2/h, depending on the relative position of
the resonant state with respect to the Fermi energy at zero bias. The model is simplified, but it
shows many similarities with experimental characteristics.

Our calculation method can be extended into the low temperature limit including spin
correlations, which lead to the Kondo effect and an increase of the conductance plateau to
2e2/h. It can be performed within the EOM method using a higher order decoupling procedure
for many body Green functions [29]. We believe that the model can also be generalized and
applied to quantum wires, in which 0.7 structures were observed as well [30]. For this case a
quantitative analysis of a charge accumulation and Coulomb interactions is needed. Preliminary
studies of a long QPC show a large charge accumulation and a large value of the intra-level
Coulomb integral for two electrons with opposite spins at the lowest resonant level. It suggests
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an anomalous conductance plateau in a narrow energy range, in the range much narrower than
in a short QPC.

For the 2DQ we studied the evolution of the energy dependence of the conductance and the
spin correlation functions with changing of interdot hopping parameter, which can be directly
controlled in experiments. For a weak-to-intermediate coupling between the 2QD and the leads,
the energy dependence of the conductance exhibits a multi-peak structure with the positions of
the peaks corresponding to the intradimer electron transitions. In the range of the intermediate
2QD–lead coupling, apart from the dominating peaks corresponding to the transitions between
the degenerate ground states of the 2QD, the secondary peaks corresponding to transitions to
the excited triplet states can also be seen. A contribution from the triplet states leads to the
enhancement of the conductance near the centre of the energy structure and is particularly well
seen in the region of intermediate interdot hopping. Here, the decrease in the absolute value
of the spin–spin correlation function, indicating the decrease of antiferromagnetic coupling
between the dots, is accompanied by a conductance rise. From the analysis of the interdot
coupling dependence of the spin–spin correlations, we speculate that the transition from the
molecular to the two-Kondo state should also be seen in experiments, in the grey scale
conductance plots, for even numbers of electrons in 2QD. In low temperatures the zero-bias
peak should be seen in the two-Kondo state (in a weak coupling regime), but it should disappear
for the molecular state (for a strong coupling).

In the 2QD studies we have applied the Hubbard operator method, which takes into account
exactly all electron and spin correlations within the strongly interacting central regions, even
if some higher order correlations with electrons from the leads are neglected. The applied
approximations reduce to the exact results in the case of vanishing interactions as well as for
the very small coupling to the leads. The approach can be naturally extended to the larger
systems provided that their energy structures are obtained.
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Appendix. Charge fluctuations in ensemble of dimers

Here, we consider an ensemble of dimers including charge fluctuations. The solution of the
dimer problem described by the Hubbard model has been previously given by Harris and
Lange [31]. The eigenenergies and eigenvalues are presented in table A.1. The average of
the quantity O is given by

〈O〉 = 1

Z

∑

λ

〈λ|O|λ〉e−β(Eλ−μNλ), (23)

where {Eλ, λ} is the set of eigenenergies and eigenstates, the partition function Z =∑
λ e−β(Eλ−μNλ), β = 1/kBT , μ is the chemical potential and Nλ is the number of electrons at

the λ-state. The spin correlation functions can be written as

〈S2
tot〉 = 〈S2

1〉 + 2〈S1 · S2〉 + 〈S2
2〉, (24)

〈S2
1〉 = 3

2 (〈n1↑〉 − 〈n1↑n1↓〉), (25)
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Table A.1. States and eigenvalues of the Hubbard dimer. Below we used ε1 = ε2 = ε,

α± = 2|t|/
√

2(4t2 + E2±), β± = E±/

√
2(4t2 + E2±), and E± = (U ± �)/2, � = √

16t2 + U2.

Number of electrons State Eigenvalue

1 1/
√

2(d†
1σ ± d†

2σ )|vac〉 ε ± t

2

d†
1↑d†

2↑|vac〉
1/

√
2(d†

1↑d†
2↓ + d†

1↓d†
2↑)|vac〉

d†
1↓d†

2↓|vac〉

⎫
⎪⎬

⎪⎭
2ε

[α±(d†
1↑d†

2↓ − d†
1↓d†

2↑) + β±(d†
1↑d†

1↓ + d†
2↑d†

2↓)]|vac〉 2ε + E±
1/

√
2(d†

1↑d†
1↓ − d†

2↑d†
2↓)|vac〉 2ε + U

3 1/
√

2(d†
1σ d†

2↑d†
2↓ ± d†

2,σ d†
1↑d†

1↓)|vac〉 3ε + U ± t

4 d†
1↑d†

1↓d†
2↑d†

2↓|vac〉 4ε + 2U

〈S1 · S2〉 = 3
2 (〈n1↑n2↑〉 − 〈n1↑n2↓〉). (26)

Using table A.1 one can derive

〈n1↑n1↓〉 = [e2βμ(β2
+e−βE+ + β2

−e−βE− + 1/2e−βU ) + 2eβ(3μ−U) cosh (βt)

+eβ(4μ−2U)]/Z , (27)

〈n1↑n2↑〉 = [e2βμ + 2eβ(3μ−U) cosh (βt) + eβ(4μ−2U)]/Z , (28)

〈n1↑n2↓〉 = [e2βμ(1/2 + α2
+e−βE+ + α2

−e−βE−) + 2eβ(3μ−U) cosh (βt) + eβ(4μ−2U)]/Z , (29)

Z = 1 + 4[eβμ + eβ(3μ−U)] cosh(βt) + e2βμ[3 + e−βU + 2e−βU/2 cosh(β�/2)]
+ eβ(4μ−2U). (30)

The chemical potential should be determined from the condition n = (1/β)(∂ ln Z/∂μ) for
the fixed number of electrons n in the system. For the half-filling 〈n1↑〉 = 1/2, the chemical
potential μ = U/2, independent of temperature.
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